Thread [Crypt-CTR] AES mit CTR oder doch nicht?
(18 answers)
Opened by thecoder2012 at 2013-02-04 06:57
You may have given up already or found a solution. It has already been 6 months after all. I ran into the same issue and your code provided the base I needed to get it working.
Here is a fully working example: (I just finished it so it has a lot of debug code in there, and the code is in serious need of reorganization, but it works 100%) Code (perl): (dl
)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 use Encode; use POSIX; #use Math::BigInt; use MIME::Base64; use Data::Dumper; # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ # AES counter (CTR) mode implementation in PHP (c) Chris Veness 2005-2011. Right of free use is */ # granted for all commercial or non-commercial use under CC-BY licence. No warranty of any */ # form is offered. */ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ # # Encrypt a text using AES encryption in Counter mode of operation # - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf # # Unicode multi-byte character safe # # @param plaintext source text to be encrypted # @param password the password to use to generate a key # @param nBits number of bits to be used in the key (128, 192, or 256) # @return encrypted text # # sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] my @sBox = ( 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ); # rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] my @rCon = ( (0x00, 0x00, 0x00, 0x00), (0x01, 0x00, 0x00, 0x00), (0x02, 0x00, 0x00, 0x00), (0x04, 0x00, 0x00, 0x00), (0x08, 0x00, 0x00, 0x00), (0x10, 0x00, 0x00, 0x00), (0x20, 0x00, 0x00, 0x00), (0x40, 0x00, 0x00, 0x00), (0x80, 0x00, 0x00, 0x00), (0x1b, 0x00, 0x00, 0x00), (0x36, 0x00, 0x00, 0x00) ); # # AES Cipher function: encrypt 'input' with Rijndael algorithm # # @param input message as byte-array (16 bytes) # @param w key schedule as 2D byte-array (Nr+1 x Nb bytes) - # generated from the cipher key by keyExpansion() # @return ciphertext as byte-array (16 bytes) # sub cipher { # main cipher function [§5.1] my($input, $w, $test) = @_; my $test=$test||0; my @w = @$w; #print Dumper(@w) . "\n"; #exit; my @input = @$input; my $Nb = 4; # block size (in words): no of columns in state (fixed at 4 for AES) my $Nr = scalar(@w)/$Nb - 1; # no of rounds: 10/12/14 for 128/192/256-bit keys #print $Nr . "\n"; my @state = (); # initialise 4xNb byte-array 'state' with input [§3.4] for(my $i=0; $i<4*$Nb; $i++){ $state[$i%4][floor($i/4)] = $input[$i]; #print $input[$i] . "\n" if($globaldebug == 1); } if ($test == 1) { print "BST($#W)(".Data::Dumper::Dumper(\@state).")\n"; } my $state = addRoundKey(\@state, \@w, 0, $Nb); #MYFIXED \@w @state = @$state; if ($test == 1) { print "FFF(".Data::Dumper::Dumper(\@state).")\n"; } for(my $round=1; $round<$Nr; $round++) { # apply Nr rounds $state = subBytes(\@state, $Nb); @state = @$state; #my $temp; #use Data::Dumper; # print "STATE1(".Data::Dumper::Dumper(@state).")\n"; #$temp=<STDIN>; $state = shiftRows(\@state, $Nb); @state = @$state; # print "STATE2(".Data::Dumper::Dumper(@state).")\n"; #$temp=<STDIN>; $state = mixColumns(\@state, $Nb); @state = @$state; # print "STATE3(".Data::Dumper::Dumper(@state).")\n"; #$temp=<STDIN>; $state = addRoundKey(\@state, \@w, $round, $Nb); @state = @$state; # print "STATE4(".Data::Dumper::Dumper(@state).")\n"; #$temp=<STDIN>; } #print "W(".Data::Dumper::Dumper(@w).")\n"; #print "OK\n"; $state = subBytes(\@state, $Nb); @state = @$state; $state = shiftRows(\@state, $Nb); @state = @$state; $state = addRoundKey(\@state, \@w, $Nr, $Nb); @state = @$state; if ($test == 1) { print "STATL(".Data::Dumper::Dumper(@state).")\n"; } my @output = ('') x (4*$Nb); # convert state to 1-d array before returning [§3.4] for (my $i=0; $i<4*$Nb; $i++){ $output[$i] = $state[$i%4][floor($i/4)]; } #print join(", ",@output) . "\n"; #exit; return \@output; } sub addRoundKey { # xor Round Key into state S [§5.1.4] my($state, $w, $rnd, $Nb) = @_; my @w = @$w; my @state = @$state; #print Dumper(@state) . "\n"; #print Dumper(@w) . "\n"; for (my $r=0; $r<4; $r++) { for (my $c=0; $c<$Nb; $c++){ $state[$r][$c] ^= $w[$rnd*4+$c][$r]; #print $state[$r][$c] . "|(".($rnd*$c).")($c)($r)(@w)\n"; } } #print Dumper(@state) . "\n"; #exit; return \@state; } sub subBytes { # apply SBox to state S [§5.1.1] my($s, $Nb) = @_; my @s = @$s; my @sBox = ( 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ); for (my $r=0; $r<4; $r++) { for (my $c=0; $c<$Nb; $c++){ $s[$r][$c] = $sBox[$s[$r][$c]]; } } return \@s; } sub shiftRows { # shift row r of state S left by r bytes [§5.1.2] my($s, $Nb) = @_; my @s = @$s; my @t = (4);#array for (my $r=1; $r<4; $r++) { for(my $c=0; $c<4; $c++){ $t[$c] = $s[$r][($c+$r)%$Nb]; # shift into temp copy } for(my $c=0; $c<4; $c++){ $s[$r][$c] = $t[$c]; # and copy back } }# note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): return \@s; # see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf } sub mixColumns { # combine bytes of each col of state S [§5.1.3] my($s, $Nb) = @_; my @s = @$s; for(my $c=0; $c<4; $c++) { my @xa = (); # 'a' is a copy of the current column from 's' my @xb = (); # 'b' is a•{02} in GF(2^8) for(my $i=0; $i<4; $i++) { $xa[$i] = $s[$i][$c]; $xb[$i] = $s[$i][$c]&0x80 ? $s[$i][$c]<<1 ^ 0x011b : $s[$i][$c]<<1; } # a[n] ^ b[n] is a•{03} in GF(2^8) #MYFIXED $xb $s[0][$c] = $xb[0] ^ $xa[1] ^ $xb[1] ^ $xa[2] ^ $xa[3]; # 2*a0 + 3*a1 + a2 + a3 $s[1][$c] = $xa[0] ^ $xb[1] ^ $xa[2] ^ $xb[2] ^ $xa[3]; # a0 * 2*a1 + 3*a2 + a3 $s[2][$c] = $xa[0] ^ $xa[1] ^ $xb[2] ^ $xa[3] ^ $xb[3]; # a0 + a1 + 2*a2 + 3*a3 $s[3][$c] = $xa[0] ^ $xb[0] ^ $xa[1] ^ $xa[2] ^ $xb[3]; # 3*a0 + a1 + a2 + 2*a3 } return \@s; } # # Key expansion for Rijndael cipher(): performs key expansion on cipher key # to generate a key schedule # # @param key cipher key byte-array (16 bytes) # @return key schedule as 2D byte-array (Nr+1 x Nb bytes) # sub keyExpansion { # generate Key Schedule from Cipher Key [§5.2] my($key,$test) = @_; $test=$test||0; my @key = @$key; my $Nb = 4; # block size (in words): no of columns in state (fixed at 4 for AES) my $Nk = scalar(@key)/4; # key length (in words): 4/6/8 for 128/192/256-bit keys my $Nr = $Nk + 6; # no of rounds: 10/12/14 for 128/192/256-bit keys if ($test == 1) { print "NK($Nk)(@key)\n"; } my @w = ();#array for(my $i=0; $i<$Nb*($Nr+1); $i++){ $w[$i] = 0; } my @temp = (map { 0 } (0..3));#array #for(my $i=0; $i<4; $i++){ # $temp[$i] = 0; #} for(my $i=0; $i<$Nk; $i++) { my @r = ($key[4*$i], $key[4*$i+1], $key[4*$i+2], $key[4*$i+3]); $w[$i] = [@r]; } #MYFIXED [] ARRAY brackets my @rCon = ( [(0x00, 0x00, 0x00, 0x00)], [(0x01, 0x00, 0x00, 0x00)], [(0x02, 0x00, 0x00, 0x00)], [(0x04, 0x00, 0x00, 0x00)], [(0x08, 0x00, 0x00, 0x00)], [(0x10, 0x00, 0x00, 0x00)], [(0x20, 0x00, 0x00, 0x00)], [(0x40, 0x00, 0x00, 0x00)], [(0x80, 0x00, 0x00, 0x00)], [(0x1b, 0x00, 0x00, 0x00)], [(0x36, 0x00, 0x00, 0x00)] ); for (my $i=$Nk; $i<($Nb*($Nr+1)); $i++) { $w[$i] = [map{ 0 } (0..3)];#array for (my $t=0; $t<4; $t++){ $temp[$t] = $w[$i-1][$t]; } if ($test == 1) { print "BEG($i)($Nk)(".($i % $Nk).")(".Data::Dumper::Dumper(\@temp).")\n"; } if($i % $Nk == 0){ my $temp1 = rotWord(\@temp); my @temp1 = @$temp1; my $temp2 = subWord(\@temp1); @temp = @$temp2; if ($test == 1) { print "KK1(".Data::Dumper::Dumper(\@temp).")\n"; } for (my $t=0; $t<4; $t++){ $temp[$t] ^= $rCon[$i/$Nk][$t];#whats wrong? #Use of uninitialized value in bitwise xor (^) at aes.pl line 279. } }elsif($Nk > 6 and ($i % $Nk) == 4) { if ($test == 1) { print "NK6(".Data::Dumper::Dumper(\@temp).")\n"; } my $temp2 = subWord(\@temp); @temp = @$temp2; } for (my $t=0; $t<4; $t++){ $w[$i][$t] = $w[$i-$Nk][$t] ^ $temp[$t]; } if ($test == 1) { print "OP(".Data::Dumper::Dumper(\@temp).")\n"; } } #print Dumper ([ @w ]) . "\n"; #exit; return \@w; } sub subWord { # apply SBox to 4-byte word w my($w) = @_; my @w = @$w; my @sBox = ( 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ); for(my $i=0; $i<4; $i++){ $w[$i] = $sBox[$w[$i]]; } return \@w; } sub rotWord { # rotate 4-byte word w left by one byte my($w) = @_; my @w = @$w; my $tmp = $w[0]; for(my $i=0; $i<3; $i++){ $w[$i] = $w[$i+1]; #print $w[$i] . "\n"; } $w[3] = $tmp; #print "test1: ".$tmp . "\n"; return \@w; } # # Decrypt a text encrypted by AES in counter mode of operation # # @param ciphertext source text to be decrypted # @param password the password to use to generate a key # @param nBits number of bits to be used in the key (128, 192, or 256) # @return decrypted text # sub decrypt { my($ciphertext, $password, $nBits) = @_; my $blockSize = 16; # block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!($nBits==128 || $nBits==192 || $nBits==256)){ return ''; # standard allows 128/192/256 bit keys } $ciphertext = decode_base64($ciphertext); $password = Encode::encode_utf8($password); # use AES to encrypt password (mirroring encrypt routine) my $nBytes = $nBits/8; # no bytes in key my @pwBytes = ('') x $nBytes;#array for (my $i=0; $i<$nBytes; $i++){ if($i>=length($password)){ $pwBytes[$i] = 0; }else{ $pwBytes[$i] = ord(substr($password,$i,1)); } } my $keyback = keyExpansion(\@pwBytes); @keyback = @$keyback; $key = cipher(\@pwBytes, \@keyback); $key = [ @{$key},splice($key,0, $nBytes-16) ]; # expand key to 16/24/32 bytes long @key = @$key; # recover nonce from 1st element of ciphertext my @counterBlock = ();#array $ctrTxt = substr($ciphertext, 0, 8); for ($i=0; $i<8; $i++){ $counterBlock[$i] = ord(substr($ctrTxt,$i,1)); } # generate key schedule my $keySchedule = keyExpansion(\@key); my @keySchedule = @$keySchedule; # separate ciphertext into blocks (skipping past initial 8 bytes) my $nBlocks = ceil((length($ciphertext)-8) / $blockSize); my @ct = ();#array for ($b=0; $b<$nBlocks; $b++){ $ct[$b] = substr($ciphertext, 8+$b*$blockSize, 16); } my @ciphertext = @ct; # ciphertext is now array of block-length strings # plaintext will get generated block-by-block into array of block-length strings my @plaintxt = ();#array for (my $b=0; $b<$nBlocks; $b++) { # set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) for (my $c=0; $c<4; $c++){ $counterBlock[15-$c] = urs($b, $c*8) & 0xff; } for (my $c=0; $c<4; $c++){ #ERROR! WTF? => Integer overflow in hexadecimal number $counterBlock[15-$c-4] = urs(($b+1)/0x100000000-1, $c*8) & 0xff; } $cipherCntr = cipher(\@counterBlock, \@keySchedule); # encrypt counter block #print "MK(".Data::Dumper::Dumper(\@cipherCntr).")\n"; #print "DD($b)($ciphertext[$b])\n"; my @plaintxtByte = ();#array for (my $i=0; $i<length($ciphertext[$b]); $i++) { # -- xor plaintext with ciphered counter byte-by-byte -- $plaintxtByte[$i] = $cipherCntr->[$i] ^ ord(substr($ciphertext[$b],$i,1)); $plaintxtByte[$i] = chr($plaintxtByte[$i]); #print "LF($plaintxtByte[$i])\n"; } $plaintxt[$b] = join('', @plaintxtByte); #php implode } # join array of blocks into single plaintext string $plaintext = join('',@plaintxt);#php implode return $plaintext; } # # Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints # # @param a number to be shifted (32-bit integer) # @param b number of bits to shift a to the right (0..31) # @return a right-shifted and zero-filled by b bits # sub urs { my($xa, $b) = @_; $xa &= 0xffffffff; $b &= 0x1f; # (bounds check) if ($xa&0x80000000 && $b>0) { # if left-most bit set $xa = ($xa>>1) & 0x7fffffff; # right-shift one bit & clear left-most bit $xa = $xa >> ($b-1); # remaining right-shifts }else{ # otherwise $xa = ($xa>>$b); # use normal right-shift } return $xa; } #Aes.Ctr.encrypt = function(plaintext, password, nBits) { sub encrypt { my $plaintext=shift; my $password=shift; my $nBits=shift||0; my $blockSize = 16; # block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!($nBits==128 or $nBits==192 or $nBits==256)) { return ''; } # standard allows 128/192/256 bit keys $plaintext = Encode::encode_utf8($plaintext); $password = Encode::encode_utf8($password); # use AES itself to encrypt password to get cipher key (using plain password as source for key # expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use) my $nBytes = $nBits/8; # no bytes in key (16/24/32) my @pwBytes = ('') x $nBytes; for (my $i=0; $i<$nBytes; $i++) { # use 1st 16/24/32 chars of password for key $pwBytes[$i] = ord(substr($password, $i, 1))||0; } $keyexp=keyExpansion(\@pwBytes); #print "KEXP(".Data::Dumper::Dumper($keyexp).")\n"; my $key = cipher(\@pwBytes, $keyexp); # gives us 16-byte key $key = [ @{$key},splice($key,0, $nBytes-16) ]; # expand key to 16/24/32 bytes long #// initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec, #// [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106 my @counterBlock = (('') x $blockSize); my $nonceSec = time; #// timestamp: milliseconds since 1-Jan-1970 my $nonceMs = 0; my $nonceRnd = floor(rand(0.99999999)*0xffff); #$nonceSec=1377683020; #$nonceMs=0; #$nonceRnd=52391; for (my $i=0; $i<2; $i++) { $counterBlock[$i] = urs($nonceMs , $i*8) & 0xff;} for (my $i=0; $i<2; $i++) { $counterBlock[$i+2] = urs($nonceRnd , $i*8) & 0xff;} for (my $i=0; $i<4; $i++) { $counterBlock[$i+4] = urs($nonceSec , $i*8) & 0xff;} #// and convert it to a string to go on the front of the ciphertext my $ctrTxt = ''; for (my $i=0; $i<8; $i++) { $ctrTxt .= chr($counterBlock[$i]); } #// generate key schedule - an expansion of the key into distinct Key Rounds for each round my $keySchedule = keyExpansion($key,0); #print "K(".join(',', map{ @{$_} } @{$keySchedule}).")\n"; my $blockCount = ceil(length($plaintext)/$blockSize); my @ciphertxt = ('') x $blockCount; #// ciphertext as array of strings for (my $b=0; $b<$blockCount; $b++) { #// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) #// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) for (my $c=0; $c<4; $c++) { $counterBlock[15-$c] = urs($b , $c*8) & 0xff; } for (my $c=0; $c<4; $c++) { $counterBlock[15-$c-4] = urs($b/0x100000000 , $c*8); } #print "C(@counterBlock)($ctrTxt)\n"; my $cipherCntr = cipher(\@counterBlock, $keySchedule,0); #// -- encrypt counter block -- # print "CPP(".Data::Dumper::Dumper($cipherCntr).")\n"; #// block size is reduced on final block my $blockLength = $b<$blockCount-1 ? $blockSize : (length($plaintext)-1)%$blockSize+1; my @cipherChar = (('') x $blockLength); for (my $i=0; $i<$blockLength; $i++) { #// -- xor plaintext with ciphered counter char-by-char -- $cipherChar[$i] = $cipherCntr->[$i] ^ ord(substr($plaintext, $b*$blockSize+$i, 1)); $cipherChar[$i] = chr($cipherChar[$i]); } $ciphertxt[$b] = join('',@cipherChar); } my $ciphertext = $ctrTxt . join('',@ciphertxt); $ciphertext = MIME::Base64::encode_base64($ciphertext); #// encode in base64 return $ciphertext; } print "Encrypt: ".encrypt('perl prototype','Ready to Have Some Fun',256)."\n"; print "Decrypt: ".decrypt('DzQPUdLS0tKCWf9U6V/UDB3aQEUWCQ==','Ready to Have Some Fun',256)."\n"; Anyways, thanks for the base. Last edited: 2013-08-28 14:22:54 +0200 (CEST) |