Thread [Crypt-CTR] AES mit CTR oder doch nicht? (18 answers)
Opened by thecoder2012 at 2013-02-04 06:57

thecoder2012
 2013-02-04 09:10
#165411 #165411
User since
2013-02-04
64 Artikel
BenutzerIn
[default_avatar]
2013-02-04T08:03:14 Muffi
Sicher, dass du nicht input und key vertauscht hast?

Ja sonst würde es wohl in PHP/JavaScript nicht funktionieren.

Nun noch der fehlende Rest weil ich ein einzelnes Posting ja nicht so lange machen darf. Alles andere im ersten Posting noch rein editiert. Eigener Versuch:

3. CryptoKäse - Versuch AES/AES-CTR in pure Perl umzusetzen
more (111.4kb):
Code (perl): (dl )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env perl
use MIME::Base64;
use POSIX qw(floor strftime mktime setlocale ceil);
#use warnings qw(uninitialized);

my $nBits = 256;
my $password = 'Ready to Have Some Fun';
my $ciphertext = 'DzQPUdLS0tKCWf9U6V/UDB3aQEUWCQ==';

print decrypt($ciphertext, $password, $nBits) . "\n";
exit;

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
#  AES counter (CTR) mode implementation in PHP (c) Chris Veness 2005-2011. Right of free use is */
#    granted for all commercial or non-commercial use under CC-BY licence. No warranty of any    */
#    form is offered.                                                                            */
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
#  
# 
# Encrypt a text using AES encryption in Counter mode of operation
#  - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
#
# Unicode multi-byte character safe
#
# @param plaintext source text to be encrypted
# @param password  the password to use to generate a key
# @param nBits     number of bits to be used in the key (128, 192, or 256)
# @return          encrypted text
#

# sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1]
my @sBox = (
        0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
        0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
        0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
        0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
        0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
        0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
        0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
        0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
        0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
        0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
        0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
        0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
        0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
        0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
        0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
        0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16
);

# rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
my @rCon = ( 
        (0x00, 0x00, 0x00, 0x00),
        (0x01, 0x00, 0x00, 0x00),
        (0x02, 0x00, 0x00, 0x00),
        (0x04, 0x00, 0x00, 0x00),
        (0x08, 0x00, 0x00, 0x00),
        (0x10, 0x00, 0x00, 0x00),
        (0x20, 0x00, 0x00, 0x00),
        (0x40, 0x00, 0x00, 0x00),
        (0x80, 0x00, 0x00, 0x00),
        (0x1b, 0x00, 0x00, 0x00),
        (0x36, 0x00, 0x00, 0x00) 
); 

#
# AES Cipher function: encrypt 'input' with Rijndael algorithm
#
# @param input message as byte-array (16 bytes)
# @param w     key schedule as 2D byte-array (Nr+1 x Nb bytes) - 
#              generated from the cipher key by keyExpansion()
# @return      ciphertext as byte-array (16 bytes)
#
sub cipher($$){    # main cipher function [§5.1]
        my($input, $w) = @_;
        my @w = @$w;
        my @input = @$input;
        my $Nb = 4;                 # block size (in words): no of columns in state (fixed at 4 for AES)
        my $Nr = scalar(@w)/$Nb - 1; # no of rounds: 10/12/14 for 128/192/256-bit keys

        my @state = ();  # initialise 4xNb byte-array 'state' with input [§3.4]
        for(my $i=0; $i<4*$Nb; $i++){
                $state[$i%4][floor($i/4)] = $input[$i];
        }
        my $state = addRoundKey(\@state, \@w, 0, $Nb);
        @state = @$state;
  
        for(my $round=1; $round<$Nr; $round++) {  # apply Nr rounds
                $state = subBytes(\@state, $Nb);
                @state = @$state;
                $state = shiftRows(\@state, $Nb);
                @state = @$state;
                $state = mixColumns(\@state, $Nb);
                @state = @$state;
                $state = addRoundKey(\@state, \@w, $round, $Nb);
                @state = @$state;
        }
        $state = subBytes(\@state, $Nb);
        @state = @$state;
        $state = shiftRows(\@state, $Nb);
        @state = @$state;
        $state = addRoundKey(\@state, @w, $Nr, $Nb);
        @state = @$state;

        my @output = (4*$Nb);  # convert state to 1-d array before returning [§3.4]
        for (my $i=0; $i<4*$Nb; $i++){
                $output[$i] = $state[$i%4][floor($i/4)];
        }
        return \@output;
}

sub addRoundKey() {  # xor Round Key into state S [§5.1.4]
        my($state, $w, $rnd, $Nb) = @_;
        my @w = @$w;
        my @state = @$state;
        for (my $r=0; $r<4; $r++) {
                for (my $c=0; $c<$Nb; $c++){
                        $state[$r][$c] ^= $w[$rnd*4+$c][$r];
                }
        }
        return \@state;
}
  
sub subBytes() {    # apply SBox to state S [§5.1.1]
        my($s, $Nb) = @_;
        my @s = @$s;
        for (my $r=0; $r<4; $r++) {
                for (my $c=0; $c<$Nb; $c++){
                        $s[$r][$c] = $sBox[$s[$r][$c]];
                }
        }
        return \@s;
}
  
sub shiftRows() {    # shift row r of state S left by r bytes [§5.1.2]
        my($s, $Nb) = @_;
        my @s = @$s;
        my @t = (4);#array
        for (my $r=1; $r<4; $r++) {
                for(my $c=0; $c<4; $c++){
                        $t[$c] = $s[$r][($c+$r)%$Nb];  # shift into temp copy
                }
                for(my $c=0; $c<4; $c++){
                        $s[$r][$c] = $t[$c];           # and copy back
                }
        }# note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
        return \@s;  # see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf 
}
  
sub mixColumns() {   # combine bytes of each col of state S [§5.1.3]
        my($s, $Nb) = @_;
        my @s = @$s;
        for(my $c=0; $c<4; $c++) {
                my @xa = (4);  # 'a' is a copy of the current column from 's'
                my @xb = (4);  # 'b' is a•{02} in GF(2^8)
                for(my $i=0; $i<4; $i++) {
                        $xa[$i] = $s[$i][$c];
                        $xb[$i] = $s[$i][$c]&0x80 ? $s[$i][$c]<<1 ^ 0x011b : $s[$i][$c]<<1;
                }

                # a[n] ^ b[n] is a•{03} in GF(2^8)
                $s[0][$c] = $xb[0] ^ $xa[1] ^ $xb[1] ^ $xa[2] ^ $xa[3]; # 2*a0 + 3*a1 + a2 + a3
                $s[1][$c] = $xa[0] ^ $b[1] ^ $xa[2] ^ $xb[2] ^ $xa[3]; # a0 * 2*a1 + 3*a2 + a3
                $s[2][$c] = $xa[0] ^ $xa[1] ^ $xb[2] ^ $xa[3] ^ $xb[3]; # a0 + a1 + 2*a2 + 3*a3
                $s[3][$c] = $xa[0] ^ $b[0] ^ $xa[1] ^ $xa[2] ^ $xb[3]; # 3*a0 + a1 + a2 + 2*a3
        }
        return \@s;
}

#
# Key expansion for Rijndael cipher(): performs key expansion on cipher key
# to generate a key schedule
#
# @param key cipher key byte-array (16 bytes)
# @return    key schedule as 2D byte-array (Nr+1 x Nb bytes)
#
sub keyExpansion($) {  # generate Key Schedule from Cipher Key [§5.2]
        my($key) = @_;
        my @key = @$key;
        my $Nb = 4;              # block size (in words): no of columns in state (fixed at 4 for AES)
        my $Nk = scalar(@key)/4;  # key length (in words): 4/6/8 for 128/192/256-bit keys
        my $Nr = $Nk + 6;        # no of rounds: 10/12/14 for 128/192/256-bit keys

        my @w = ();#array
        my @temp = ();#array

        for(my $i=0; $i<$Nk; $i++) {
                my @r = ($key[4*$i], $key[4*$i+1], $key[4*$i+2], $key[4*$i+3]);
                $w[$i] = @r;
        }

        for (my $i=$Nk; $i<($Nb*($Nr+1)); $i++) {
                $w[$i] = ();#array
                for (my $t=0; $t<4; $t++){
                        $temp[$t] = $w[$i-1][$t];
                }

                print "$i $Nk\n";
                #ERROR! WTF? => Illegal modulus zero
                next if(!$i or !$Nk);
                if($i && $Nk && $i % $Nk == 0){
                        my $temp = subWord(rotWord(\@temp));
                        @temp = @$temp;
                        for ($t=0; $t<4; $t++){
                                $temp[$t] ^= $rCon[$i/$Nk][$t];
                        }
                }elsif($Nk > 6 && $i%$Nk == 4) {
                        my $temp = subWord(\@temp);
                        @temp = @$temp;
                }
                for ($t=0; $t<4; $t++){
                        $w[$i][$t] = $w[$i-$Nk][$t] ^ $temp[$t];
                }
        }
        return \@w;
}

sub subWord() {    # apply SBox to 4-byte word w
        my($w) = @_;
        my @w = @$w;
        for ($i=0; $i<4; $i++){
                $w[$i] = $sBox[$w[$i]];
        }
        return \@w;
}

sub rotWord() {    # rotate 4-byte word w left by one byte
        my($w) = @_;
        my @w = @$w;
        my $tmp = $w[0];
        for ($i=0; $i<3; $i++){
                $w[$i] = $w[$i+1];
        }
        $w[3] = $tmp;
        return \@w;
}

# 
# Decrypt a text encrypted by AES in counter mode of operation
#
# @param ciphertext source text to be decrypted
# @param password   the password to use to generate a key
# @param nBits      number of bits to be used in the key (128, 192, or 256)
# @return           decrypted text
#
sub decrypt() {
        my($ciphertext, $password, $nBits) = @_;
        my $blockSize = 16;  # block size fixed at 16 bytes / 128 bits (Nb=4) for AES
        if (!($nBits==128 || $nBits==192 || $nBits==256)){
                return '';  # standard allows 128/192/256 bit keys
        }
        my $ciphertext = decode_base64($ciphertext);

        # use AES to encrypt password (mirroring encrypt routine)
        my $nBytes = $nBits/8;  # no bytes in key
        my @pwBytes = ();#array
        for ($i=0; $i<$nBytes; $i++){
                $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff;
        }

        my $keyback = keyExpansion(\@pwBytes);
        @keyback = @$keyback;
        $key = cipher(\@pwBytes, \@keyback);
        @key = @$key;
        $key = (@key, ($key[0..$nBytes-16]));  # expand key to 16/24/32 bytes long
        @key = @$key;

        # recover nonce from 1st element of ciphertext
        my @counterBlock = ();#array
        $ctrTxt = substr($ciphertext, 0, 8);
        for ($i=0; $i<8; $i++){
                $counterBlock[$i] = ord(substr($ctrTxt,$i,1));
        }

        # generate key schedule
        my $keySchedule = keyExpansion(\@key);
        my @keySchedule = @$keySchedule;

        # separate ciphertext into blocks (skipping past initial 8 bytes)
        my $nBlocks = ceil((length($ciphertext)-8) / $blockSize);
        my @ct = ();#array
        for ($b=0; $b<$nBlocks; $b++){
                $ct[$b] = substr($ciphertext, 8+$b*$blockSize, 16);
        }
        $ciphertext = $ct;  # ciphertext is now array of block-length strings

        # plaintext will get generated block-by-block into array of block-length strings
        my @plaintxt = ();#array

        for (my $b=0; $b<$nBlocks; $b++) {
                # set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
                for (my $c=0; $c<4; $c++){
                        $counterBlock[15-$c] = urs($b, $c*8) & 0xff;
                }
                for (my $c=0; $c<4; $c++){
                        #ERROR! WTF? => Integer overflow in hexadecimal number
                        $counterBlock[15-$c-4] = urs(($b+1)/0x100000000-1, $c*8) & 0xff;
                }
                $cipherCntr = cipher(\@counterBlock, \@keySchedule);  # encrypt counter block
                @cipherCntr = @$cipherCntr;

                my @plaintxtByte = ();#array
                for (my $i=0; $i<length($ciphertext[$b]); $i++) {
                        # -- xor plaintext with ciphered counter byte-by-byte --
                        $plaintxtByte[$i] = $cipherCntr[$i] ^ ord(substr($ciphertext[$b],$i,1));
                        $plaintxtByte[$i] = chr($plaintxtByte[$i]);
                }
                $plaintxt[$b] = join('', $plaintxtByte); #php implode
        }
          
        # join array of blocks into single plaintext string
        $plaintext = join('',$plaintxt);#php implode
        return $plaintext;
}

#
# Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints
#
# @param a  number to be shifted (32-bit integer)
# @param b  number of bits to shift a to the right (0..31)
# @return   a right-shifted and zero-filled by b bits
#
sub urs() {
        my($xa, $b) = @_;
        $xa &= 0xffffffff; $b &= 0x1f;  # (bounds check)
        if ($xa&0x80000000 && $b>0) {   # if left-most bit set
                $xa = ($xa>>1) & 0x7fffffff;   #   right-shift one bit & clear left-most bit
                $xa = $xa >> ($b-1);           #   remaining right-shifts
        }else{                       # otherwise
                $xa = ($xa>>$b);               #   use normal right-shift
        }
        return $xa;
}

Fehler "Out of memory!" aber konnte den genauen Grund bisher nicht finden.
Ohne ein Aufruf sind mir noch die beiden Fehlermeldungen Illegal modulus zero und Integer overflow in hexadecimal number begegnet, wo ich nicht wusste, wie man es in Perl scheinbar schreiben muss. Hab den jeweiligen Fehler im Code als Kommentar hinterlegt.
Last edited: 2013-02-05 02:16:47 +0100 (CET)

View full thread [Crypt-CTR] AES mit CTR oder doch nicht?